Real-time optimization and monitoring of 3D printers: a case study at Universidad Valle del Momboy

Authors

DOI:

https://doi.org/10.70219/mby-242025-405

Keywords:

Additive manufacturing, operational surveillance, automated management, productivity, technical excellence

Abstract

This research focuses on the creation, implementation, and analysis of a comprehensive mechanism for continuous monitoring and management of additive manufacturing operations at Universidad Valle del Momboy (UVM), seeking to maximize both efficiency and excellence of manufactured products. The development consisted of configuring a technological platform based on Raspberry Pi 4, establishing a bilateral information exchange channel with three-dimensional printing equipment, facilitating permanent surveillance and immediate identification of operational anomalies. The adopted methodological strategy was characterized by a hybrid paradigm that integrates numerical and descriptive perspectives through the implementation of structured questionnaires, directed conversations, and systematic event recording. The findings show substantial improvements in the excellence of manufactured products along with a considerable reduction in operational failures and material losses. Data collection instruments applied to specialized personnel and end users revealed high levels of acceptance and favorable assessment regarding the mechanism's impact on operational effectiveness. The main conclusion establishes that the incorporation of this system notably enhances additive manufacturing procedures at UVM, simultaneously contributing to the improvement of institutional excellence and efficiency. Recommendations include specialized training of human resources and the execution of systematic evaluations to ensure optimal long-term functioning.

Downloads

Download data is not yet available.

References

Andrade Salazar, M. T., Bravo Lucas, A. A., Bravo Morillo, R. K., & Sangucho Sasig, M. D. (2023). Control y monitoreo remoto de una impresora 3D con visión artificial. Código Científico Revista de Investigación, 4(2), 959–968. https://revistacodigocientifico.itslosandes.net/index.php/1/article/view/266/591

Arango, C. E., Valderrama, G., & Vargas, J. (2019). Diseño y aplicación de un sistema de control para impresora 3D basado en un brazo robótico de múltiples grados de libertad. Hill Publishing Group.

Berman, B. (2012). Impression 3D: La nueva revolución industrial. Business Horizons, 55(2), 155–162. https://doi.org/10.1016/j.bushor.2011.11.003

Calderón, G. A., & Paolini, E. (2023). Sistema de monitoreo en tiempo real para impresoras 3D [Tesis de grado, Universidad Valle de Momboy]. Repositorio Institucional Universidad Valle de Momboy. https://repositorio.uvm.edu.ve/handle/123456789/1403

Charalampos Kopsacheilis, Paschalis Charalampous, Ioannis Kostavelis & Dimitrios Tzovaras. (2021). In Situ Visual Quality Control in 3D Printing. Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020) - Volume 3: IVAPP, pages 317-324. https://www.scitepress.org/Papers/2020/93298/93298.pdf.

Field, J. (2003). Social Capital. Routledge. https://www.routledge.com/Social-Capital/Field/p/book/9780415703437

Gibson, I., Rosen, D. W., & Stucker, B. (2019). Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing (2.ª ed.). Springer. https://research.utwente.nl/en/publications/additive-manufacturing-technologies-rapid-prototyping-to-direct-d

Johnson, R. B., Onwuegbuzie, A. J., & Turner, L. A. (2007). Toward a definition of mixed methods research. Journal of Mixed Methods Research, 1(2), 112–133. https://doi.org/10.1177/1558689806298224

Kopsacheilis, C., Charalampous, P., & Kostavelis, I. (2020). In Situ Visual Quality Control in 3D Printing. En Proceedings of the 9th International Conference on Information Visualization Theory and Applications (IVAPP) (págs. 219–228). SciTePress. https://www.scitepress.org/Papers/2020/93298/93298.pdf

Kucera, J., Cierpial, K., & Prochazka, R. (2022). A real-time monitoring framework for cooperative 3D printing. Solid Freeform Fabrication Symposium.

Malte Gebler, Anton JM Schoot Uiterkamp, Cindy Visser (2014). A global sustainability perspective on 3D printing technologies. Política Energética, Volumen 74, noviembre de 2014, páginas 158-167. https://doi.org/10.1016/j.enpol.2014.08.033

Patton, M. Q. (2015). Métodos de evaluación e investigación cualitativa (4.ª ed.). SAGE Publications.

Pérez Martínez, S., & López Lemus, J. A. (2021). Metodología Kanban para la optimización del proceso de impresión 3D. Jóvenes en la Ciencia, 15, 1–6. https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/download/4620/4102/14673

Putnam, R. D. (2020). Bowling alone: The collapse and revival of American community (Edición revisada). Simon & Schuster. Xie, B., Gao, H., & Zhang, T. (2023). A review of the control system of a 3D printer. Recent Patents on Engineering, 17(1), 25–41. https://doi.org/10.2174/1872212116666220310164041

Xie, B., Gao, H., & Zhang, T. (2023). A review of the control system of a 3D printer. Recent Patents on Engineering, 17(1), 25–41. https://doi.org/10.2174/1872212116666220310164041

Published

2025-08-28

How to Cite

Calderón, G. A., & Paolini , E. (2025). Real-time optimization and monitoring of 3D printers: a case study at Universidad Valle del Momboy. Momboy, (24), 359–372. https://doi.org/10.70219/mby-242025-405

Issue

Section

Artículos

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.