Automatization of a control system and measures for the study of galvanomagnetic effects

Authors

  • José Fernando Pérez Universidad de Los Andes
  • Braulio José Fernández Universidad de los Andes
  • Ernesto Calderón Universidad de los Andes
  • Víctor García Universidad de los Andes

Keywords:

Automatization, galvanomagnetic effects, GPIB, temperature, magnetic field

Abstract

This work consisted in the elaboration and automatization of a set of control instruments for the measurement and study of the galvanomagnetic effects in new semiconductor materials. At an algorithm was designed and a program was made in LabVIEW under a graphical ambient which allows measurements under different controlled conditions of current, temperature and magnetic field. The different experimental measurements that are made on the sample allow to calculate the resistivity, the Hall effect, the magnetoresistance, the mobility and the carriers concentration. Seven equipments are interconnected by the IEEE 488.2 interface under the central dominion of a computer for the acquisitions and control of the temperature, the magnetic field, the tension and the electrical current applied on the sample. The current on the magnet to generate the magnetic field as well as the water flow for cooling are also controlled by the GPIB interface by means of a digital circuit.

References

Polyakov, N. N. and Shevchenko, A. E. (1999). Galvanomagnetic phenomena in semiconductor single crystals and films. Physics of Semiconductors and Dielectrics. Russian Physics Journal, 42(1), 28-37.

Fernandez, B. Davila R. and Belandria, E. Galvanomagnetic effects of CuInTe2 at low temperatures. (1998). Inst. Phys. Conf. Ser. No 152 section G: Magnetic Materials

McKELVEY, J. P. (1976). Física del estado sólido y de semiconductores. Limusa, S.A., Mexico.

Kevin F. Brennan, and April S Brown. (2002). Theory of modern electronic semiconductor devices John Wiley, U.S.A.

VELÁSQUEZ-VELÁSQUEZ, A, BELANDRIA, E, FERNANDEZ B. J, AVILA GODOY R, DELGADO G, ACOSTA-NAJARRO. (2000). SYNTHESIS AND CHARACTERIZATION OF THE TERNARY COMPOUND AG2GESE3. G. D. PHYSICA STATUS SOLIDI (B), 220(1), 683-686.

Villarreal, M. A, de Chalbaud L M, Fernández, B. J, Velásquez-Velásquez A, Pírela. (2009). Preparation and electrical characterization of the compound CuAgGeSe3. Journal of physics: Conferences Series: 167(1) 012045.

IEEE-488 National Instruments Corporation. USA.

Fernández, B. Bracho, D. (1996). Sistema automatizado para medidas de los efectos galvanomagnéticos XLVI Convencion anual de ASOVAC, capitulo Lara. 18-22

LabVIEW User Manual, April 2003. National Instruments Corporation. USA.

NI AT-GPIB/TNT, High-Performance GPIB Interfaces for ISA. National Instruments Corporation. USA.

Van der Pauw L. J. (1958). A method of measuring the resistivity and hall coeficient on lamellae of arbitrary shape. Philips Technical Review. 20 (220)

Pecharsky V. K and Gshneidner, Jr. (1997). Gigant Magnetocaloric effect in Gd5Si2Ge2. Phys Rev. Lett. 78(23) 4494-4497.

Morellon L, Sankiewicz J, Garcia-landa B, Algarabel P. A and Ibarra. M. R. (1998). A. Appl. Phys. Lett. 73(23) 3462-3464.

Choe W, Pecharsky V. K, Pecharsky K. A, Gshneidner Jr, Young V. G, Miller G. J. (2000). Making and breaking covalent bonds across the magnetic transition in the giant magnetocaloric material Gd5Si2Ge2. Phys. Rev Lett. 84(20) 4617-4620.

Published

2013-11-15

How to Cite

Pérez, J. F., Fernández, B. J., Calderón, E., & García, V. (2013). Automatization of a control system and measures for the study of galvanomagnetic effects. Ingeniería UVM. Revista Electrónica Científico - Técnica, 7(2). Retrieved from https://journal.uvm.edu.ve/index.php/ingenieria/article/view/279