Evaluation of molecular sieves in the purification of propylene used in the production of polypropylene
Keywords:
Polypropylene (PP), molecular sieves, Ziegler-Natta catalysis, methanolAbstract
The polymerization of propylene is a reaction that requires high quality feed streams, making it necessary to remove all traces of contaminants, such contaminants can be: H2O, H2S, CO2, COS, NH3, PH3 and other hydrocarbons oxygenates such as alcohols, ketones and ethers, etc.. Separation technology and cost effective for the removal of these contaminants is the use of selective adsorbents. In the process, the propylene feed is purified in a fixed-bed adsorption (D-1 A / B) to remove the moisture present in the propylene, which is used as a molecular sieve adsorbent material used in plant propylene 4A. The propylene comes from a process of pyrolysis of ethane and propane which contains impurities such as H2O, methanol, methyl mercaptan, etc.. In the present study evaluates the molecular sieves 4A, 13X, OG-941 and F9, for the purification of PP used for the production of polypropylene. Scaling was performed adsorber used industrial and designed a pilot-scale adsorber through a selected scaling factor (0.005) maintaining the same ratio of length and diameter. Propylene samples were purified with molecular sieves, was determined by chromatography main impurities before and after passing through molecular sieves. After polymerization was tested in a pilot scale reactor which evaluated the performance of the catalyst activity with molecular sieves and compared with data from crop and then set the final industry-wide replacement. Characterized the product generated in the reactor to determine whether there is any difference in the main properties and isotactic index (II), flow index (FI), particle size distribution (DTP), average molar mass Viscosimetric (Mv). The results of catalyst performance show that molecular sieves 13X and F9 are most effective for the removal of major pollutants present in the propylene. The industrial test performed with the purified propylene sieve 13X reported values of activity 10% higher than typical values registered with the sieve 4A.
References
Alvarez, E., “Influencia de la incorporación de cargas sobre las propiedades finales del polipropileno”, Trabajo final de grado en Ingeniería de Materiales, Coordinación de Ingeniería de Materiales, U.S.B., Sartenejas 1992.
Tzoganakis, C., Dickson, S y Budman, H., “Reactive extrusion of polypropylene with pulsed peroxide adittion:process and control aspects”, Rev.Ind.Chem.Res, pp.36,1067-1075, 1997.
Billmeyer, F., “Ciencia de los polímeros”, Editorial Reverté, España, pp.392-394, 1978.
Odian, G., “Principios de Polimerización”. Mc Graw-Hill Book Company. New York 1970.
Brydson, J.A., “Materiales Plásticos”. Instituto de Plásticos y Caucho. España.1977.
Inkrott, K., Scinta, J., Smith, P., “Polyolefin Catalyst Manufacturing”, Oil & Gas Journal, pp. 16, October 1989.
Meyers, R. A.,Handbook of Chemical Production Processes, @ copyright 1986.
González, E., “La Catálisis Coordinativa en la Polimerización de Olefinas, Catálisis Ziegler-Natta”. El Tablazo, 1991.
Boor, J., “Ziegler-Natta Catalysis and Polymerization”. (Ed) New York, Academic Press. 1979.
Tait, P. y Watkigs, N., “Monoalkene Polymerization Mechanisms”, Comprehensive Polymer Science, p 533-573, 1987.
Mitsui Petrochemical Industries, Ltd. Vpp Project Polypropylene Plant Design Basic. Volumen I.
Smith, D. l. “Applications for Selective Adsorbents in Polyethylene and Polypropylene Production, Alcoa Separations Technology, Inc, Warrendale, Pennsylvania. 1990.
Reid, J. A. y McPhaul, D. R.. “Control Contaminants in Olefin Feedstocks and Products Part 1, Hydrocarbon Processing, pp. 45-47, 1996.
Hydrocarbon Processing. Petrochemical Processes’97, Vol. 76, Nº3, pp.155-156, 1997
Ralph, T., Yang. “Gas Separation by Adsortion Processes”. New York. 1978.
Hahn, A., Chaptal, A., Sialelli, J., Hydrocarbon Processing, February, pp. 91-92, 1997.
Richman, P.,Ultra-Purification with Molecular Sieves in Polyethylene and Polypropylene Plants. Union Carbide Corporation. Molecular Sieve Department.
Collins, J.J., The Lub/Equilibrium Section Concept for fixed-bed adsortion. Union Carbide Corporation. New York. August 1988.
Ralph, T., Yang, Gas Separaton by Adsorption Processes, New York, 1985.
Giannetto, G. Y col, “Zeolitas Características, Propiedades y Aplicaciones Industriales pp.41-49, 2000.
Ross, S. y Olivier, J.P.., Physical Adsorption, New York, Interscience. 1964.
Grace, W.R. y col., Davison Molecular Sieve, “Introduction to Molecular Sieve”. New York 1972.
Weast, R. C. y col. “CRC Handbook of Chemistry and Physics”. 62nd Edition. Florida. 1982.
McNichol, J., Naiser, R., “The use of new and improved High Performance Molecular Sieve Adsortion to Dehydrate and Purify Refinery and Petrochemical Process Streams”. Eastern Canada Chem Fair. Octubre 1996.
Edgeworth J., R., y Wooldridge T., M., “Pilot Plant, Models and Scale-up Methods in Chemical Engineering”. Mc Graw Hill Book Company NewYork. 1957.
Vethencourt C., A., “Desarrollo de Nuevos Métodos para la Caracterización de Resinas en Polipropileno de Venezuela S.A.”, Informe final de cursos en cooperación, Coordinación de Ingeniería de Materiales, U.S.B., Sartenejas. 2000.
Masuda, T. y Takami, Y., Journal of Polymer Science, Polymer Chemistry Edition, vol. 15. 1977.
Bruce E., R.. “Olefin/Paraffin Separation Technology”: A Review. Industries Enginnering Chemical Research, pp. 32, 2208-2212, 1993
Union Carbide Corporation. Precautions and Safe Practices for Handling Molecular Sieves in Process Units. New York 1988.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2010 Nicolino A. Bracho P

This work is licensed under a Creative Commons Attribution 4.0 International License.